كـــــــــة هندسة الـحاسوب و المعلوماتية والاتصالات Faculty of Computer \& Informatics and Communications Engineering

Logic Circuits
 Dr. Eng.
 Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter_ 2 Number Systems, Operations and Codes

Lecture = 03 Numbers, Conversions and

Operations الأعداد، التحويلات والكمبيا

3-1. Decimal Numbers (الأعاد العشرية)

> The position of each digit in a weighted number system (نظام العدد الموزون/المنقل) is assigned a weight based on the base of the system.

- The base of decimal numbers is ten, because only ten symbols (0 through 9) are used to represent any number.
$>$ The column weights of decimal numbers are powers of ten that increase from right to left beginning with $10^{\circ}=1$:

$$
\cdots 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} 10^{0} .
$$

> For fractional decimal (عشري كسري) numbers, the column weights are negative powers of ten that decrease from left to right:

$$
\cdots 10^{2} 10^{1} 10^{0} \cdot 10^{-1} 10^{-2} 10^{-3} \cdots
$$

$>$ Decimal numbers can be expressed as the sum of the products of each digit times the column value for that digit.

- Thus, the number 9240 can be expressed as

$$
\begin{aligned}
& \left(9 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(0 \times 10^{0}\right) \\
& 9000+200+40+0=9240
\end{aligned}
$$

1. Express the decimal number 47 as a sum of the values of each digit.
2. Express the number 480.52 as the sum of values of each digit.

$$
\begin{aligned}
47 & =\left(4 \times 10^{1}\right)+\left(7 \times 10^{0}\right) \\
& =(4 \times 10)+(7 \times 1) \\
& =40+7
\end{aligned}
$$

$$
\begin{aligned}
568.23 & =\left(5 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(8 \times 10^{0}\right)+\left(2 \times 10^{-1}\right)+\left(3 \times 10^{-2}\right) \\
& =(5 \times 100)+(6 \times 10)+(8 \times 1)+(2 \times 0.1)+(3 \times 0.01) \\
& =500+60+8+0.2+0.03
\end{aligned}
$$

3-2. Binary Numbers

$>$ For digital systems, the binary number system is used. Binary has a base of two and uses the digits 0 and 1 to represent quantities.
$>$ The column weights of binary numbers are powers of two that increase from right to left beginning with $2^{0}=1$:

$$
\cdots 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}
$$

> For fractional binary numbers, the column weights are negative powers of two that decrease from left to right:

$$
\cdots 2^{2} 2^{1} 2^{0} \cdot 2^{-1} 2^{-2} 2^{-3} \cdots
$$

$>$ A binary counting sequence for numbers from zero to fifteen (15) is shown.

- Notice the pattern of zeros and ones in each column.
- Notice for four bits are required from zero to 15.
$\left.\begin{array}{c|cccc}\hline \begin{array}{c}\text { Decimal } \\ \text { Number }\end{array} & & & & \\ \text { Binary Number }\end{array}\right]$

In general, with n bits you can count up to a number equal to

$$
\text { Largest decimal number }=2^{n}-1
$$

For example, with five bits $(n=5)$ you can count from zero to thirty-one.
With six bits $(n=6)$ you can count from zero to sixty-three.

$$
2^{5}-1=32-1=31 \quad 2^{6}-1=64-1=63
$$

Binary weights.

2^{8}	2^{7}	$\begin{gathered} \begin{array}{c} \text { Positiy } \\ (\text { Wh } \end{array} \\ \mathbf{2}^{6} \quad 2^{5} \end{gathered}$		2^{2}	2^{1}	2^{0}
		$64 \quad 32$	8	4	2	1
$2^{-1} \quad 2^{-2}$		Negative Powers of Two (Fractional Number)			2^{-6}	
		2^{-3}	2^{-4}	2^{-5}		
1/2	1/4	1/8	1/16	1/32		64
0.5	0.25	0.125	0.625	0.03125		5625

3-3. Binary Conversions (التحويلات الثنائية)

\square Binary-to-decimal Conversion.

The decimal value of a binary number can be determined by adding the column values of all of the bits that are 1 and discarding all of the bits that are 0 .

Example 3-2

Convert the binary numbers 1101101 and 0.1011 to decimal.
Determine the weight of each bit that is a 1 , and then find the sum of the weights to get the decimal number.

Weight:	$2^{6} 2^{5}$	2^{4}	$2^{3} 2^{2} 2^{1} 2^{0}$	Weight:	2^{-1}	2^{-2}	2^{-3}	2^{-4}
Binary number:	1	1	0	1	0	1	Binary number:	0.1

Binary Conversions

D Decimal-to-Binary Conversion.

You can convert decimal to any other base by repeatedly dividing by the base.
For binary, repeatedly divide by 2 :

Example 3-3

Convert the decimal numbers 49 to binary by repeatedly dividing by 2 .
You can do this by "reverse division" and the answer will read from left to right. Put quotients(حاصل القسمه) to the left and remainders (الباقي) on top.

YAII\|P3-4 Convert the decimal numbers 19 and 45 to binary by repeatedly

 dividing by 2 .$$
\text { (a) } \begin{gathered}
\frac{19}{2}=9 \\
\downarrow \\
\frac{9}{2}=4 \\
\downarrow \\
\frac{4}{2}=2 \\
\downarrow \\
\frac{2}{2}=1 \\
\downarrow \\
\frac{1}{2}=0
\end{gathered}
$$

LSB -Least Significant Bit (البت الأصغر منزلة، وهو البت الموجود في أقصى يمين الرقم);
MSB - Most Significant Bit (البت الأعلى منزلة، وهو البت الموجود في أقصى يسار الرقم).

Converting Decimal fraction to binary

You can convert a decimal fraction to binary by repeatedly multiplying the fractional results of successive multiplications by 2. The carries form the binary number.

FAIIIDP3-4 Convert the decimal fraction 0.188 and 0.3125 to binary by repeatedly multiplying the fractional results by 2 .

3-4. Binary Arithmetic Operations (العطليات الحسابية الثنانية)

\square Binary Addition.
The rules for binary addition are

When an input carry $=1$ due to a previous result, the rules are

Carry Carry

Carry bits \downarrow

Example3-6 add the binary numbers 00111 and 10101 and show the equivalent decimal addition.

$$
0111
$$

001117
1010121
$11100=28$
\square Binary Subtraction.
The rules for binary subtraction are (borrow = استعارة/استقر اض)
$0-0=0$
$1-1=0$
$1-0=1$
$10-1=1 \quad 0-1$ with a borrow of 1
Note: the borrow value is $(2)_{10}=(10)_{2}$

Example 3-1

Perform the following binary subtractions:
(a) 11-01
(b) $11-10$
(a) $\begin{array}{rrrr}11 & 3 & \text { (b) } \begin{array}{rrr}11 & 3 \\ -\frac{-01}{10} & \frac{-1}{2} & \frac{-10}{01}\end{array} \frac{-2}{1}\end{array}$

No borrows were required in this example.
The binary number 01 is the same as 1 .

Subtract the binary number 011 from 101 and show the equivalent decimal subtraction.

101
-011
010

5
-3
2

Let's examine exactly what was done to subtract the two binary numbers since a borrow is required. Begin with the right column.

\square Binary Multiplication.
Binary multiplication of two bits is the same as multiplication of the decimal digits 0 and 1.

$$
0 \times 0=0
$$

The four basic rules for multiplication bits are as follows:

$$
\begin{aligned}
& 0 \times 1=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

Example 3-9

Perform the following multiplications:
(a) 11×11
(b) 101×111

Solution

\square Binary Division.
Division in binary follows the same procedure as division in decimal.

Example 3-10

Perform the following divisions:
(a) $110 \div 11$
(b) $110 \div 10$
(a) $1 1 \longdiv { 1 1 0 }$
3) $\frac{2}{6}$
(b) $1 0 \longdiv { 1 1 0 } \quad 2 \longdiv { 6 }$

$$
\frac{11}{000} \quad \frac{6}{0}
$$

$$
\frac{10}{10} \quad \frac{6}{0}
$$

$$
\frac{10}{00}
$$

Divide (1110111)2 by (1001) ${ }_{2}$.

3-5. Complements of Binary Numbers (متممات الأعداد الثنائية)

The 1's complement and the 2's complement of binary number are important because they permit (تسمح) the representation of negative numbers.
The method of 2's complement arithmetic is commonly used in computers to handle negative numbers.

1's Complement (المتّم) of Binary Numbers
$>$ The 1's complement of a binary number is just the inverse of the digits. To form the 1 's complement, change all 0 's to 1 's and all 1 's to 0 's.
> For example,

> In digital circuits, the 1's complement is formed by using inverters:

2's Complement of Binary Numbers

$>$ The 2 's complement of a binary number is found by adding 1 to the LSB of the 1 's complement, i.e. $\quad 2$'s complement $=(1$'s complement $)+1$
$>$ For example,
11001010
00110101 (1's complement)

+1
00110110
(2 's complement)

$>$ In digital circuits, the process of obtaining the 2 's complement of a negative binary number is formed as

3-6. Signed Binary Numbers (الأعداد الثنائية ذات الإشارة)

\square There are several ways to represent signed binary numbers. In all cases, the MSB in a signed number is the sign bit, that tells you if the number is positive or negative.
A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.
\square Computers use a modified 2's complement for signed numbers. Positive numbers are stored in true form (with a 0 for the sign bit) and negative numbers are stored in complement form (with a 1 for the sign bit).
$>$ For example, the positive number 58 is written using 8 -bits as

Sign bit

Magnitude bits
Negative numbers are written as the 2's complement of the corresponding positive number.
> For example, the negative number -58 is written as

The Decimal Value of Signed binary Numbers (القيمة العشرية للأرقام الثنائية ذات الإشارة)

\square Decimal values of positive and negative numbers in signed-magnitude form are determined by summing the weights in all the magnitude bit positions where there are 1 s and ignoring (إهمال/تجاهل) (إها) those positions where are zeros. The sign is determined by examination of the sign bit.

1) Determine the decimal value of this signed number expressed in signed magnitude: 10010101 .

The seven magnitude bits and their powers-of-two weights are as follows:

The sign bit is 1 , therefore, the decimal number is $\mathbf{- 2 1}$.
2) Assuming that the sign bit $=-128$, show that $11000110=-58$ as a 2's complement signed number.

$$
\begin{array}{rrrrrrrl}
-128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 . \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
-128+64 & & & +4+2 & =-58
\end{array}
$$

3-7. Arithmetic Operations with Signed Numbers

\square Using the signed number notation with negative numbers in 2's complement form simplifies addition and subtraction of signed numbers.

Addition

The two numbers in addition is addend (المضاف) and the augend (المضاف إلية). The result is the sum.

There are four cases that can occur when signed binary numbers are added.

1. Both numbers positive.
2. Positive number with magnitude larger than negative number.
3. Negative number with magnitude larger than positive number.
4. Both numbers negative.
\square Rules for addition:

- Add the two signed numbers.
- Discard (رفض)) any final carries.

The result is in signed form.

Example 3-12

Both numbers positive.

$$
\begin{array}{r}
00000111 \\
+00000100 \\
\hline 00001011
\end{array} \begin{array}{r}
7 \\
+4 \\
\hline 11
\end{array}
$$

The sum is positive and is therefor in true (uncomplemented) binary.

Both numbers negative.

Discard carry \longrightarrow| 11111011 |
| ---: |
| +11110111 |
| 11110010 |

The final carry bit is discarded. The sum is negative and therefor in 2's complement form.

Positive number with magnitude larger than negative number.

Discard carry \begin{tabular}{r}
00001111

+11111010

\hline 100001001

15

+-6

9
\end{tabular}

The final carry bit is discarded. The sum is positive and therefor in true (uncomplemented) binary.

Negative number with magnitude larger than positive number.

$$
\begin{array}{r}
00010000 \\
+11101000 \\
\hline 11111000
\end{array} \begin{array}{r}
16 \\
+-24 \\
\hline-8
\end{array}
$$

The sum is negative and therefor in 2's complement form.

Subtraction

Subtraction is special case of addition. For example, subtracting +6 (subtrahend (الهطرورح منه) (الهطرح)) is equivalent to adding -6 to +9 . (minuend

Basically, the subtraction operation changes the sign of the subtrahend and adds it to the minuend. The result of subtraction is called the difference.
\square Rules for Subtraction:

- 2's complement the subtrahend and add the numbers.
- Discard any final carries.
- The result is in signed form.

The end of Lecture_03, chapter 2

